If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-56=0
a = 3; b = 6; c = -56;
Δ = b2-4ac
Δ = 62-4·3·(-56)
Δ = 708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{708}=\sqrt{4*177}=\sqrt{4}*\sqrt{177}=2\sqrt{177}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{177}}{2*3}=\frac{-6-2\sqrt{177}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{177}}{2*3}=\frac{-6+2\sqrt{177}}{6} $
| 4(8x+3)+9(8x+9)+4=104x+98 | | 8c-(2-c)=-16+7c | | 8x+6+2x-4=4x+2 | | 0.4(x-1000)+1.1=2.9+0.2x | | Yx.85=180 | | 5x^2+19=99 | | (3x-8)²=0. | | 4(2x+4)+3=2(6x-4)-23 | | 5(h²-7)=0. | | 2x+3=2(x+7) | | 2^x-18=110 | | x^2-265=0 | | 7/x-3=14/4 | | 18=6/k | | 5/6x+7/12=1/18 | | 2/3x-6=3/2 | | 4(5x+1)-2=2x-12 | | 3(x-2)^2=7 | | 2t=-4.9t^2+60 | | 2t=4.9t^2+60 | | 0x+4=4x-6 | | (x+2)^2=3(x+2) | | 4p+4=8+3p | | 400(1.19)^x=34280 | | r²=144 | | ¾h+6=0 | | 4y+9=3y−7 | | 3x-9+3x=5+6x-13 | | 3y-9=6-4y | | 9y-6-6y+1=0 | | 6x+8=4×+32 | | x-(x-506)=1154 |